ИНТЕРСТИЦИАЛЬНЫЕ КЛЕТКИ КАХАЛЯ: КАЛЬЦИЙ-ОПОСРЕДОВАННЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ ФУНКЦИЙ

  • Н. М. Енгенов ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк

Аннотация

Обзор посвящен анализу известных физиологических механизмов кальциевой регуляции функции интерстициальных клеток Кахаля желудочно-кишечного тракта. Обсуждены особенности развития, иммунохимические маркеры и типы клеток Кахаля, варианты их локализации в различных органах пищеварительной системы. Показано, что регуляцию моторной активности желудка и тонкой кишки обеспечивает межклеточный функциональный комплекс – SIP синцитий, включающий интерстициальные пейсмекерные клетки, гладкомышечные клетки и интерстициальные PDGFRα+-клетки. ICC желудочно-кишечного тракта, обладающие спонтанной электрической (пейсмейкерной) активностью, необходимы для генерации, распространения, регуляции частоты и амплитуды медленных волн, сопрягая процессы возбуждения и сокращения гладких миоцитов. В основе физиологии пейсмекерных и гладкомышечных клеток лежат механизмы контроля внутриклеточного баланса Са2+: приток ионов из внеклеточного матрикса, высвобождение Са2+ из внутриклеточных хранилищ и его депонирование. Фундаментальным для генерации медленноволнового тока в ICC и сопряжения с сокращением гладких миоцитов является кальций-зависимый сигнальный механизм, включающий последовательную активацию рецепторов (IT3 и рианодина), потенциал-зависимых и ANO-каналов в плазмолемме интерстициальной клетки.

Литература

1. Воротников А.В., Щербаков О.В., Кудряшова Т.В., Тарасова О.С., Ширинский В.П., Г.П. Фитцер и др. Фосфорилирование миозина как основной путь сокращения гладких мышц. Росс. физиол. журн. им. И.М. Сеченова. 2009; 95 (10): 1058-1073.
2. Егоров В.И., Кармазановский Г.Г., Щеголев А.И., Дубова Е.А., Яшина Н.И., Осипова Н.Ю. и др. Значение предоперационной визуализации для выбора хирургической тактики при гастроинтестинальных стромальных опухолях. Медицинская визуализация. 2007; 2: 34-43.
3. Низяева Н.В., Щёголев А.И., Марей М.В., Сухих Г.Т. Интерстициальные пейсмейкерные клетки. Вестник РАМН. 2014; 7-8: 17-24.
4. Студницкий В.Б., Пелюх П.Ф. Роль некоторых производных мезенхимальной ткани в формировании периодической деятельности пищеварительного тракта. Вестник науки Сибири. 2015. Спецвыпуск (15). 326-332.
5. Avila-Medina J., Mayoral-González I., Domínguez-Rodriguez A., Gallardo-Castillo I., et al. The complex role of store operated calcium entry pathways and related proteins in the function of cardiac, skeletal and vascular smooth muscle cells. Front Physiol. 2018;9:257.
6. Baker S. A., Leigh W. A., Del Valle G., De Yturriaga I. F., et al. Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. eLife. 2021; 10: e64099.
7. Baker S.A., Drumm B.T., Saur D., Hennig G.W., et al. Spontaneous Ca(2+) transients in interstitial cells of cajal located within the deep muscular plexus of the murine small intestine. J. Physiol. 2016;594:3317-3338.
8. Ball E.R., Matsuda M.M., Dye L., Hoffmann V., et al. Ultra-structural identification of interstitial cells of Cajal in the zebrafish Danio rerio. Cell Tissue Res. 2012; 349: 483-491.
9. Beckett E.A., Takeda Y., Yanase H., Sanders K.M., Ward S.M. Synaptic specializations exist between enteric motor nerves and interstitial cells of Cajal in the murine stomach. J. Comp. Neurol. 2005;493:193-206.
10. Berridge M.J. Inositol trisphosphate and calcium signalling mechanisms. Biochim. Biophys. Acta. 2009;1793:933-940.
11. Beyder A., Farrugia G. Targeting ion channels for the treatment of gastrointestinal motility disorders. Therap. Adv. Gastroenterol. 2012;5:5-21.
12. Blaustein M.P., Lederer W.J. Sodium/calcium exchange: Its physiological implications. Physiol Rev. 1999;79:763-854.
13. Braunstein T.H., Inoue R., Cribbs L., Oike M., et al. The role of L- and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles. J Vasc Res. 2009;46:138-151.
14. Burnstock G., Lavin S. Interstitial cells of cajal and purinergic signalling. Auton Neurosci. 2002;97:68-72.
15. Choi S., Park D.Y., Yeum C.H., Chang I.Y., et al. Bradykinin modulates pacemaker currents through bradykinin b2 receptors in cultured interstitial cells of cajal from the murine small intestine. Br. J. Pharmacol. 2006;148:918-926.
16. Deng J., He P., Zhong X., Wang Q., Li L., Song B. Identification of t-type calcium channels in the interstitial cells of cajal in rat bladder. Urology. 2012;80:e1381-e1387.
17. Drumm B.T., Koh S.D., Andersson K.E., Ward S.M. Calcium signalling in cajal-like interstitial cells of the lower urinary tract. Nat. Rev. Urol. 2014;11:555-564.
18. Dubois Ch., Prevarskaya N., Abeele F.V. The calcium-signaling toolkit: Updates needed. BiochimicaetBiophysicaActa. 2016; 1863:1337-1343.
19. Flores-Soto E., Reyes-Garcia J., Sommer B., Montaño L.M. Sarcoplasmic reticulum Ca2+ refilling is determined by L-type Ca2+ and store operated Ca2+ channels in guinea pig airway smooth muscle. Eur J Pharmacol. 2013;721:21-28.
20. Foong D., Zhou J., Zarrouk A., Ho V., et al. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility. Int J Mol Sci. 2020 Jun; 21(12): 4540.
21. Godin N., Rousseau E. TRPC6 silencing in primary airway smooth muscle cells inhibits protein expression without affecting OAG-induced calcium entry. Mol Cell Biochem. 2007;296:193-201.
22. Gomez-Pinilla P.J., Gibbons S.J., Bardsley M.R., Lorincz A., et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;296:G1370-G1381.
23. Hallam T.J., Rink T.J.. Receptor-mediated Ca2+ entry: Diversity of function and mechanism. Trends Pharmacol Sci. 1989;10:8-10.
24. Hashitani H., Lang R.J. Functions of icc-like cells in the urinary tract and male genital organs. J. Cell. Mol. Med. 2010;14:1199-1211.
25. Hu Z., Ma R., Gong J. Investigation of testosterone-mediated non-transcriptional inhibition of Ca2+ in vascular smooth muscle cells. Biomed Rep. 2016;4:197-202.
26. Huizinga J.D., Thuneberg L., Kluppel M., et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995; 373: 347-349.
27. Hunziker M., Gosemann J-H., O'Donnell A-M., Corcionivoschi N. Altered Anoctamin-1 (ANO 1) Tyrosine Phosphorylation In Congenital Ureteropelvic Junction Obstruction. Conference: 2012 American Academy of Pediatrics National Conference and Exhibition. October 2012.
28. Ibba Manneschi L., Pacini S., Corsani L., Bechi P., Faussone-Pellegrini M.S. Interstitital cells of Cajal in the human stomach: Distribution and relationship with enteric innervation. Histol. Histopathol. 2004;19:1153-1164.
29. Iino S., Horiguchi K. Interstitial cells of cajal are involved in neurotransmission in the gastrointestinal tract. Acta Histochem. Cytochem. 2006;39:145-153.
30. Ito S., Kume H., Naruse K., Kondo M., et al. A novel Ca2+ influx pathway activated by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2008 Apr;38(4):407-413.
31. Kim B.J., Kwon Y.K., Kim E., So I. Effects of histamine on cultured interstitial cells of cajal in murine small intestine. Korean J. Physiol. Pharmacol. 2013;17:149-156.
32. Kim B.J., Park K.J., Kim H.W., Choi S., et al. Identification of trpm7 channels in human intestinal interstitial cells of cajal. World J. Gastroenterol. 2009;15:5799-5804.
33. Kluppel M., Huizinga J.D., Malysz J., Bernstein A. Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Develop. Dyn. 1998; 211 (1): 60-71.
34. Koh S.D., Jun J.Y., Kim T.W., Sanders K.M. A Ca (2+)-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J. Physiol. 2002; 540 (3): 803-814.
35. Komuro T. Comparative morphology of interstitial cells of Cajal: Ultrastructural characterization. Microsc. Res. Tech. 1999;47:267-285.
36. Lee H.T., Hennig G.W., Fleming N.W., Keef K.D., et al. Septal interstitial cells of Cajal conduct pacemaker activity to excite muscle bundles in human jejunum. Gastroenterology. 2007;133:907-917.
37. Lipskaia L., Bobe R., Chen J., Turnbull I.C., et al. Synergistic role of protein phosphatase inhibitor 1 and sarco/endoplasmic reticulum Ca2+-ATPase in the acquisition of the contractile phenotype of arterial smooth muscle cells. Circulation. 2014;129:773-785.
38. Liu B., Zhang B., Huang S., Yang L., et al. Ca2+ Entry through reverse mode Na+/Ca2+ Exchanger contributes to store operated channel-mediated neointima formation after arterial injury. Can J Cardiol. 2018;34:791-799.
39. Martinsen A., Dessy C., Morel N. Regulation of calcium chan-nels in smooth muscle: New insights into the role of myosin light chain kinase. Channels (Austin). 2014;8:402-413.
40. Matsuki K., Kato D., Takemoto M., Suzuki Y., et al. Negative regulation of cellular Ca2+ mobilization by ryanodine receptor type 3 in mouse mesenteric artery smooth muscle. Am J Physiol Cell Physiol. 2018;315:C1-C9.
41. Mei F., Han J., Huang Y. Jiang Z.Y., et al. Plasticity of interstitial cells of Cajal: A study in the small intestine of adult Guinea pigs. Anat Rec (Hoboken). 2009; 292 (7): 985-993.
42. Metzger R., Schuster T., Till H., Franke F.E, Dietz H.G. Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr. Surg. Int. 2005; 21 (3): 169-174.
43. Miettinen M., Fletcher C.D.M., Kindblom L.-G., Tsui W.M.S. et al. Mesenchimal tumors of the small intestine. WHO classification of tumours of the digestive system. F.T. Bosman, F. Carneiro, R.H. Hruban et al. (eds.). Lyon: International Agency for Research on Cancer. 2010. P. 115-118.
44. Nishiyama K., Azuma Y.T., Morioka A., Yoshida N., et al. Roles of Na+/Ca2+ exchanger isoforms NCX1 and NCX2 in motility in mouse ileum. Naunyn Schmiedebergs Arch Pharmacol. 2016;389:1081-1090.
45. Ordog T., Ward S.M., Sanders K.M. Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol. 1999;518: 257-269.
46. Pappas A., Wellman G.C. Setting the pace for gi motility: Ryanodine receptors and ip3 receptors within interstitial cells of cajal. Focus on “intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of cajal” Am. J. Physiol. 2015;308:C606-C607.
47. Popescu L.M., Gherghiceanu M., Cretoiu D., Radu E. The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J. Cell Mol. Med. 2005; 9 (3): 714-730.
48. Radu B.M., Banciu A., Banciu D. D., Radu M., et al. Calcium Signaling in Interstitial Cells: Focus on Telocytes. Int J Mol Sci. 2017 Feb; 18(2): 397.
49. Rumessen J.J., Mikkelsen H.B., Thuneberg L. Ultrastructure of interstitial cells of Cajal associated with deep muscular plexus of human small intestine. Gastroenterology. 1992;102:56-68.
50. Rumessen J.J., Thuneberg L. Interstitial Cells of Cajal in Human Small Intestine: Ultrastructural Identification and Organization Between the Main Smooth Muscle Layers. Gastroenterology. 1991;100:1417-1431.
51. Sanders K. M., Ward S. M., Koh S. D.. Interstitial Cells: Regulators of Smooth Muscle Function. Physiol Rev. 2014; 94(3): 859-907.
52. Sanders K.M., Koh S.D., Ward S.M. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Ann. Rev. Physiol. 2006;68:307-343.
53. Schreiber R., Ousingsawat J., Wanitchakool P., Sirianant L., et al. Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca2+ and plasma membrane lipid. J Physiol. 2018 Jan 15; 596(2): 217-229.
54. Singh R.D., Gibbons S.J., Saravanaperumal S.A., Du P., et al. Ano1, a Ca2+-activated Cl-channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of cajal. J. Physiol. 2014;592:4051-4068.
55. Sommer B., Flores-Soto E., González-Avila G. Cellular Na+ handling mechanisms involved in airway smooth muscle contraction (Review) Int J Mol Med. 2017;40:3-9.
56. Sommer B., Flores-Soto E., Reyes-García J., Diaz-Hernández V., et al. Na+ permeates through L-type Ca2+ channel in bovine airway smooth muscle. Eur J Pharmacol. 2016;782:77-88.
57. Song T., Hao Q., Zheng Y.M., Liu Q.H., Wang Y.X. Inositol 1,4,5-trisphosphate activates TRPC3 channels to cause extracellular Ca2+ influx in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1455-L1466.
58. Torihashi S., Nishi K., Tokutomi Y., Nishi T., et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology. 1999;117:140-148.
59. Vocke K., Dauner K., Hahn A., Ulbrich A., et al. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. J Gen Physiol. 2013 Oct; 142(4): 381-404.
60. Wang X.Y., Paterson C., Huizinga J.D. Cholinergic and nitrergic innervation of ICC-DMP and ICC-IM in the human small intestine. Neurogastroenterol. Motil. 2003;15:531-543.
61. Ward S.M., Burns A.J., Torihashi S., Sanders K.M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994; 480: 91-97.
62. Ward S.M., Harney S.C., Bayguinov J.R., McLaren G.J., Sanders K.M. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis. Pt 1J. Physiol. 1997;505:241-258.
63. Ward S.M., Ordög T., Bayguinov J.R., Horowitz B., et al. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology. 1999; 117 (3): 584-594.
64. Wilson C., Lee M. D., Heathcote H. R., Zhang X., et al. Mitochondrial ATP production provides long-range control of endothelial inositol trisphosphate-evoked calcium signaling. J Biol Chem. 2019 Jan 18; 294(3): 737-758.
65. Worley J.F., Kotlikoff MI. Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells. Am J Physiol. 1990;259:L468-L480.
66. Wu J.J., Rothman T.P., Gershon M.D. Development of the Interstitial Cell of Cajal: Origin, Kit Dependence and Neuronal and Nonneuronal Sources of Kit Ligand. J. Neurosci. Res. 2000; 59 (3): 384-401.
67. Yadak R., Breur M., Bugiani M. Gastrointestinal Dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J Rare Dis. 2019; 14: 33.
68. Ye J., Zhu Y., Waliul I., Khan W.I.,et al. IL-9 enhances growth of ICC, maintains network structure and strengthens rhythmicity of contraction in culture. J. Cell. Mol. Med. 2006; 10 (3): 687-694.
69. Zhao C., Wu A.Y., Yu X., Gu Y., et al. Microdomain elements of airway smooth muscle in calcium regulation and cell proliferation. J Physiol Pharmacol. 2018;69.
70. Zhao X., Yue C. Gastrointestinal stromal tumor. J. Gastrointest. Oncol. 2012; 3 (3): 189-208.
71. Zhou J.J., Linsdell P. Evidence that extracellular anions interact with a site outside the cftr chloride channel pore to modify channel properties. Can. J. Physiol. Pharmacol. 2009;87:387-395.
72. Zhu M.H., Kim T.W., Ro S., Yan W., et al. Ca2+-activated Cl- conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J. Physiol. 2009;587:4905-4918.
73. Zhu M.H., Sung T.S., O’Driscoll K., Koh S.D., Sanders K.M. Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of cajal. Am. J. Physiol. 2015;308:C608-C620.
Опубликована
2021-03-01
Как цитировать
ЕНГЕНОВ, Н. М.. ИНТЕРСТИЦИАЛЬНЫЕ КЛЕТКИ КАХАЛЯ: КАЛЬЦИЙ-ОПОСРЕДОВАННЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ ФУНКЦИЙ. Университетская клиника, [S.l.], n. 1(38), p. 78-87, март 2021. ISSN 1819-0464. Доступно на: <http://journal.dnmu.ru/index.php/UC/article/view/679>. Дата доступа: 22 дек. 2024 doi: https://doi.org/10.26435/uc.v0i1(38).679.