МЕХАНИЗМЫ ПАМЯТИ ПСИХОЛОГИЧЕСКОГО СТРЕССА И ВОЗДЕЙСТВИЯ НА НИХ В ЛЕЧЕНИИ СИНДРОМА ПОСТТРАВМАТИЧЕСКОГО СТРЕССА И БОЛЬШОГО ДЕПРЕССИВНОГО РАССТРОЙСТВА

  • И. И. Абрамец ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк
  • Д. В. Евдокимов ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк
  • Ю. В. Кузнецов ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк
  • Ю. В. Сидорова ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк

Аннотация

Стресс, особенно его психологический компонент, связанный с невозможностью управлять им, или избежать его воздействия, вызывает тревожные или депрессивные расстройства в виде синдрома посттравматического стресса и большого депрессивного расстройства. В формировании этих заболеваний существенную роль играют формирование, воспроизведение и генерализация памяти страха и памяти отчаяния, которые нарушают деятельность синапсов, нейронов, нейронных сетей и поведения.В этом обзоре рассмотрены механизмы формирования и воспроизведения памяти контекстуального условного страха и отчасти памяти не избегаемого психологического стресса (памяти отчаяния). Проанализировано влияние традиционных и быстродействующих антидепрессантов на эти формы памяти, как одно из направлений фармакотерапии указанных аффективных расстройств.

Литература

1. Martin E, Seligman P, Maier SF. Failure to escape traumatic shock. J Exp Psychol. 1967; 74 (1): 1-9. doi: 10.1037/h0024514.
2. Bleys D, Luyten P, Soenens B, Claes S. Gene-environment interactionsbetween stress and 5-HTTLPR in depression: a meta-analytic update. J AffectDisord. 2018; 226: 339-345. doi: 10.1016/j.jad.2017.09.050.
3. Kaczkurkin A N, et al. Neural substrates of overgeneralized conditioned fear in PTSD. Am J Psychiatry. 2017; 174 (2): 125-134. doi: 10.1176/appi.ajp.2016.15121549.
4. Odonnell M, Creamer M, Pattison P. Posttraumatic stress disorder and depression following trauma: understanding comorbidity. Am J Psychiatry. 2004;161 (8): 1390-1396. doi: 10.1176/appi.ajp.161.8.1390.
5. Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci.2002; 3(6): 453-462. doi: 10.1038/nrn849.
6. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012; 338 (6103): 68-72. doi: 10.1126/science.1222939.
7. Jing L, Duan TT, Tian M, et al. Despair-associated memory requires a slow-onset CA1 long-term potentiationwith unique underlying mechanisms. Sci Rep.2015; 5: 15000. doi: 10.1038/srep15000.
8. Sun P, Wang F, Wang L, et al. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study. J Neurosci; 2011; 31 (45): 16464 – 16472. doi: 10.1523/JNEUROSCI.1542-11.2011.
9. Bienenstock EL, Cooper LN, Munro PW. Theory for the development ofneuron selectivity: orientation specificity and binocular interaction in visualcortex. J Neurosci.1982; 2 (1): 32-48. doi: 10.1523/JNEUROSCI.02-01-00032.1982.
10. Bergstrom HC, McDonald CG, Dey S, et al. The structure of Pavlovian fear conditioning in the amygdala. Brain StructFunct. 2013; 218 (6): 1569-1589. doi: 10.1007/s00429-012-0478-2.
11. Bergstrom HC. The neurocircuitry of remote cued fear memory. NeurosciBiobehav Rev. 2016.71: 409-417. doi: 10.1016/j.neubiorev.2016.09.028.
12. Kitamura T, Ogawa SK, Roy DS. et al. Engrams and circuits crucial for systems consolidation of memory. Science. 2017; 356 (6333): 73-78. doi: 10.1126/science.aam6808.
13. Gale GD, Anagnostaras SG, Godsil BP, et al.Role of the basolateral amygdala in the storage of fearmemories across the adult lifetime of rats. J Neurosci.2004;24 (15): 3810-3825. doi: 10.1523/JNEUROSCI.4100-03.2004.
14. Lee JL. Reconsolidation: maintaining memory relevance. Trends Neurosci. 2009; 32(8): 413-420. doi: 10.1016/j.tins.2009.05.002.
15. Lee JL, Everitt BJ, Thomas KL. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science. 2004; 304 (5672): 839-843. doi: 10.1126/science.1095760.
16. Debiec J, LeDoux JE, Nader K.Cellular and systems reconsolidation in the hippocampus. Neuron. 2002; 36 (3): 527-538. doi: 10.1016/s0896-6273(02)01001-2.
17. Григорьян ГА, Маркевич ВА. Консолидация, реактивация и реконсолидация памяти. Журнал Высш. Нервн. Деят. 2014; 64 (2): 123-136. doi: 10.7868/S0044467714020087
18. BaileyCH., KandelER., HarrisKM. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harbor Perspec Bio. 2015; 7 (7): ArticleID a021758. doi: 10.1101/cshperspect.a021758.
19. BourneJN, HarrisKM. Balancing structure andfunction at hippocampal dendritic spines, Ann Rev Neurosci. 2008; 31: 47-67. doi: 10.1146/annurev.neuro.31.060407.125646.
20. Nakayama D, Hashikawa-Yamasaki Y, Ikegaya Y, et al. Late Arc/Arg3.1 expression in the basolateral amygdala is essential for persistence of newly-acquired and reactivated contextual fear memories. Sci Rep. 2016; 6: 21007. doi: 10.1038/srep21007.
21. Bingol B, Wang CF, Arnott D, et al. AutophosphorylatedCaMKII-alpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell. 2010;140 (4):567-578. doi: 10.1016/j.cell.2010.01.024.
22. Lee SH, Choi JH, Lee N, et al. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science. 2008;319 (5867):1253-1256.doi: 10.1126/science.1150541.
23. Graff J, Josef NF, Horn ME, et al.Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell. 2014;156 (1-2):261-276.doi: 10.1016/j.cell.2013.12.020.
24. Nakayama D, Iwata H, Teshirogi C, et al. Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J Neurosci. 2015;35 (2):819-830.doi: 10.1523/JNEUROSCI.2525-14.2015.
25. Liu X, Gu QH, Duan K, Li Z, et al. NMDA receptor-dependent LTD is required for consolidation but not acquisition of fear memory. J Neurosci. 2014; 34 (26): 8741-8748. doi: 10.1523/JNEUROSCI.2752-13.2014
26. Vanvossen AC, Portes MAM, Scoz-Silva R, et al. Newly acquired and reactivated contextual fear memories are more intense and prone to generalize after activation of prelimbic cortex NMDA receptors. Neurobiol Learn Mem. 2017; 137 (Jan): 154-162. . doi: 10.1016/j.nlm.2016.12.002.
27. Santini E, Quirk GJ, Porter JT. Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons.J Neurosci. 2008;28(15):4028-4036. doi: 10.1523/JNEUROSCI.2623-07.2008.
28. Myers KM, Davis M.Mechanisms of fear extinction. Mol Psychiatry. 2007;12 (2):120-50. doi: 10.1038/sj.mp.4001939.
29. Bender CL, Giachero M, Comas-Mutis R, et al. Stress influences the dynamics of hippocampal structural remodeling associated with fear memory extinction. Neurobiol Learn Mem. 2018; 155 (Nov):412-421. doi: 10.1016/j.nlm.2018.09.002.
30. Jasnow AM, Cullen PK, Riccio DC. Remembering another aspect of forgetting. Front Psychol. 2012; 3 (1): 175. doi: 10.3389/fpsyg.2012.00175.
31. Zhou H, Xiong G-J, Jing L, et al. The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nat Commun. 2017; 8: 2190. doi: 10.1038/s41467-017-02315-4.
32. Pollack GA, Bezek JL, Lee SH, et al. Cued fear memory generalization increases over time. Learn Mem. 2018; 25 (7): 298-308. doi: 10.1101/lm.047555.118.
33. Lopresto D, Schipper P, Homberg JR. Neural circuits and mechanisms involved in fear generalization: implications for the pathophysiology and treatment of posttraumatic stress disorder. NeurosciBiobehav Rev. 2016;60: 31-42. doi: 10.1016/j.neubiorev.2015.10.009.
34. Norrholm SD, Jovanovic T, Briscione MA, et al. Generalization of fear-potentiated startle in the presence of auditory cues: a parametric analysis. Front BehavNeurosci. 2014; 8: 361. doi: 10.3389/fnbeh.2014.00361.
35. PedrazaLK, Sierra RO, Giachero M, et al. Chronic fluoxetine prevents fear memory
generalization and enhances subsequent extinction by remodeling hippocampal dendritic spines and slowing down systems consolidation. Transl Psychiatry. 2019; 9: 53. doi: 10.1038/-s41398-019-0371-3.
36. Restivo L, Vetere G, Bontempi B, et al. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci. 2009;29 (25): 8206-8214. doi: 10.1523/JNEUROSCI.0966-09.2009.
37. Einarsson EÖ, Pors J, Nader K. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression. Neuropsychopharmacol. 2015; 40 (2): 480-487. doi: 10.1038/npp.2014.197.
38. Pedraza LK, Sierra RO, Boos FZ, et al. The dynamic nature of systems consolidation: stress during learning as a switch guiding the rate of the hippocampal dependency andmemory quality. Hippocampus. 2016; 26 (4): 362-371.doi: 10.1002/hipo.22527.
39. Bessa JM, Ferreira D, Melo I, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. MolPsychiatry. 2009; 14 (8): 764-773.doi: 10.1038/mp.2008.119.
40. Ritov G, Boltyansky B, Richter-Levin G. A novel approach to PTSDmodeling in rats reveals alternating patterns of limbic activity in differenttypes of stress reaction. MolPsychiatry.2016;21 (5): 630-641. doi: 10.1038/mp.2015.169.
41. Richter-Levin G, Xu L. How could stress lead to major depressive disorder? IBRO Reports. 2018; 4 (1): 38-43. doi: 10.1016/j.ibror.2018.04.001
42. Pizzagalli DA. Frontocingulatedysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacol. 2011; 36 (2): 183-206. doi:10.1038/npp.2010.166.
43. Nolen-Hoeksema S, Wisco BE, Lyubomirsky S.Rethinking rumination. PerspectPsychol Sci. 2008 3: 400-424. doi: 10.1111/j.1745-6924.2008.00088.x.
44. Gotlib IH, Joormann J. Cognition and depression: current status and future directions. Ann Rev Clin Psychol. 2010; 6: 285-312. doi: 10.1146/annurev.clinpsy.121208.131305.
45. Wang G, Cheng Y, Gong M, et al. Systematic correlationbetween spine plasticity and the anxiety/depression-like phenotype induced by corticosterone in mice.NeuroReport. 2013; 24 (12) 682-687. doi: 10.1097/WNR.0b013e32836384db.
46. Hains AB, Vu MA, Maciejewski PK, et al. Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress,” Proc
Nat AcadSciUSA. 2009;106, (42): 17957-17962. doi: 10.1073/pnas.0908563106.
47. Zanos P, Moaddel R, Morris PJ, et al.. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016; 533 (7604): 481-486. doi: 10.1038/nature17998.
48. Li HB, Mao RR, Zhang JC, et al.Antistress effect ofTRPV1 channel on synaptic plasticity and spatial memory. Biol. Psychiatry. 2008; 64 (4): 286-292. doi: 10.1016/j.biopsych.2008.02.020.
49. Mayberg HS. Targeted electrode-based modulation of neural circuits for depression. J Clin Invest. 2017; 119 (4): 717-725. doi:10.1172/JCI38454.
50. Duan TT., Tan JW, Yuan Q, et al. Acute ketamine-induces hippocampal synaptic depression and spatial memory impairmentthrough dopamine D1/D5 receptors. Psychopharmacology (Berl). 2013; 228 (3): 451-461. doi: 10.1007/s00213-013-3048-2.
51. Zhang K, Xu T, Yuan Z, et al. Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN channels in fast-acting antidepressant responses of ketamine. Sci Signal.2017; 9(458): ra123. doi:10.1126/scisignal.aai7884.
52. Abramets II, KuznetsovYuV, Evdokimov DV, Zayka TO. Piracetam potentiates neuronal and behavioral effects of ketamine. Research Results in Pharmacology. 2019; 5(3): 1-7.
doi 10.3897/rrpharmacology.5.35530
53. Miller OH, Yang L, Wang C-C, et al. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for rapid antidepressant action of ketamine. eLife. 2014; 3: e03581. doi: 10.7554/eLife.03581.001.
54. Nabavi S, Fox R, Proulx CD, et al. Engineering a memory with LTD and LTP. Nature. 2014; 511 (7509): 348-352. doi: 10.1038/nature13294.
55. Gerhard D M, Wohleb ES, Duman RS. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity. Drug Discov Today. 2016; 21 (3): 454-464. doi: 10.1016/j.drudis.2016.01.016.
56. Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010; 329 (5994): 959-964. doi: 10.1126/science.1190287.
57. Autry AE, Adachi M, Nosyreva E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011; 475 (7354):91-95. doi: 10.1038/nature10130.
Опубликована
2020-10-01
Как цитировать
АБРАМЕЦ, И. И. et al. МЕХАНИЗМЫ ПАМЯТИ ПСИХОЛОГИЧЕСКОГО СТРЕССА И ВОЗДЕЙСТВИЯ НА НИХ В ЛЕЧЕНИИ СИНДРОМА ПОСТТРАВМАТИЧЕСКОГО СТРЕССА И БОЛЬШОГО ДЕПРЕССИВНОГО РАССТРОЙСТВА. Университетская клиника, [S.l.], n. 3(36), p. 92-102, окт. 2020. ISSN 1819-0464. Доступно на: <http://journal.dnmu.ru/index.php/UC/article/view/559>. Дата доступа: 28 март 2024 doi: https://doi.org/10.26435/uc.v0i3(36).559.