ANALYSIS OF THE NEUROPHYSIOLOGICAL AND NEUROCHEMICAL MECHANISMS OF SUBSYNDROMES OF BEHAVIORAL DEPRESSIVE SYNDROME

  • И. И. Абрамец SEI HPE «M. Gorky Donetsk National Medical University», Donetsk
  • Ю. В. Кузнецов SEI HPE «M. Gorky Donetsk National Medical University», Donetsk
  • Д. В. Евдокимов SEI HPE «M. Gorky Donetsk National Medical University», Donetsk
  • Т. О. Зайка SEI HPE «M. Gorky Donetsk National Medical University», Donetsk

Abstract

Depressive syndrome occurs in a number of mental, neurological and somatic illnesses. Such a wide syndrome dissemination indicates the heterogeneity of its constituent subsyndromes. Neurophysiological and neurochemical heterogeneity of illness complicates its treatment. This review covered the pathophysiological mechanisms of development of depressive disorder subsyndromes, which can be modeled in animals. This applies to decreasing the motivations that determine certain behavioral paradigms, anhedonia, increasing anxiety, sleep disturbances and appetite disorders. Literature data give evidences that the basis of these subsyndromes is the weakening of the excitatory neurotransmission and functional connections in the brain limbic structures – prefrontal cortex, nucleus accumbens, amygdala, hippocampus, etc.

References

1. Kessler RC, Chiu WT, Demler O, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005; 62 (6): 617-27. doi:10.1001/archpsyc.62.6.617
2. Millan MJ. (2006). Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther. 2006; 110 (2): 135-370. doi:10.1016/j.pharmthera.2005.11.006
3. Harro J, Oreland L. Depression as a spreading adjustment disorder of monoaminergic neurons: a case for primary implications of the locus coeruleus. Brain Res Rev. 2001; 38 (1): 79 – 128. PMID 11750928
4. Stepanichev M, Dygalo N.N, Grigoryan G, et al.. Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BioMed Research International. 2014, Article ID 932757, 20 pages,
http://dx.doi:10.1155/2014/932757
5. Abelaira HM, Reus GZ, Quevedo J. Animal models as tools to study the pathophysiology of depression. Revista Brasileira de Psiquiatria. 2013;35 (2): S112-S120. doi:10.1590/1516-4446-2013-1098
6. Вартанов А.В., Вартанова И.И. Эмоции, мотивация, потребность в филогенезе психики и мозга. Вестн. Москов. Ун-та, сер.14. Психология, 2005; (3): 20-35.
7. Reynolds SM, Berridge KC. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat Neurosci. 2008; 11 (4): 423-425. doi: 10.1038/nn2061
8. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013; 14 (9): 609-625. doi: 10.1038/nrn3381
9. Nicola SM. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl). 2007; 191 (3): 521-550. doi:10.1007/s00213-006-0510-4
10. Carlezon WA Jr, Thomas MJ. Biological substrates of reward and aversion: A nucleus accumbens activity hypothesis. Neuropharmacology. 2009; 56 (suppl 1): 122-132. doi: 10.1016/j.neuropharm.2008.06.075
11. Lobo MK, Zaman S, Damez-Werno DM et al. DeltaFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013 33 (49): 18381-18395. doi: 10.1523/JNEUROSCI.1875-13.2013
12. Natsubori A, Tsutsui-Kimura I, Nishida H et al. Ventrolateral striatal medium spiny neurons positively regulate food-incentive, goal-directed behavior independently of D1 and D2 selectivity. J Neurosci. 2017; 37 (10): 2723-2733. doi: 10.1523/JNEUROSCI.3377-16.2017
13. Bailey MR, Simpson EH, Balsam PD. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiol Learn Mem. 2016; 133 (Sep): 233-256. doi: 10.1016/j.nlm.2016.07.015
14. Hutchison MA, Gu X, Adrover MF et al. Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior. Molecular Psychiatry. 2018; 23 (5): 1213-1225. doi: 10.1038/mp.2017.7
15. Barrot M, Sesack SR, Georges F et al. Braking dopamine systems: A new GABA master structure for mesolimbic and nigrostriatal functions. J Neurosci. 2012; 32 (41): 14094-14101. doi: 10.1523/JNEUROSCI.3370-12.2012
16. Proulx CD, Aronson S, Milivojevic D et al. A neural pathway controlling motivation to exert effort. Proc. Natl. Acad. Sci. USA. 2018; 115 (22): 5792-5797. doi: 10.1073/pnas.1801837115
17. Felger JC, Li Z, Haroon E et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol. Psychiatry. 2016; 21 (10): 1358-1365. doi: 10.1038/mp.2015.168
18. Yohn SE, Arif Y, Haley A et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology. 2016; 233 (19-20): 3575-3586. doi: 10.1007/s00213-016-4392-9
19. Nunes EJ, Randall PA, Estrada A et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology. 2014; 231 (4): 727-736. doi: 10.1007/s00213-013-3285-4
20. Salazar A, Gonzalez-Rivera BL, Redus L et al. Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral ipopolysaccharide immune challenge. Hormon Behav. 2012; 62 (3): 202-209. doi: 10.1016/j.yhbeh.2012.03.010
21. Vichaya EG, Laumet G, Christian DL et al. Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2,3 dioxygenase. Neuropsychopharmacology. 2019; 44 (2): 364-371. doi: 10.1038/s41386-018-0075-z
22. Rizvi SA, Pizzagalli DA, Sproule DA, Kennedy SH. Assessing anhedonia in depression: potentials and pitfalls. Neurosci Biobehav Rev. 2016; 65 (1): 21-35. doi: 10.1016/j.neubiorev.2016.03.004
23. Sescousse G, Caldú X, Segura B et al. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev. 2013; 37 (4): 681-696. doi: 10.1016/j.neubiorev.2013.02.002
24. Nielsen CK, Arnt J, Sánchez C. Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and interindividual differences. Behav Brain Res. 2000; 107 (1): 21-33
25. Rizvi SJ, Quilty LC, Sproule BA et al. Development and validation of the Dimensional Anhedonia Rating Scale (DARS) in a community sample and individuals with major depression. Psychiatry Res. 2015; 229 (2): 109-119. doi: 10.1016/j.psychres.2015.07.062
26. Keedwell, PA, Andrew C, Williams SC et al. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005; 58 (11): 843-853. doi:10.1016/j.biopsych.2005.05.019
27. Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011; 15 (2): 56-67. doi: 10.1016/j.tics.2010.12.004
28. Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012; 35 (1): 68-77. doi: 10.1016/j.tins.2011.11.005
29. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998; 28 (3): 309-369
30. Wassum KM, Ostlund SB, Maidment NT et al. Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proc Natl Acad Sci USA. 2009; 106 (30): 12512-12517. doi: 10.1073/pnas.0905874106
31. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid acting agents. Trends Neurosci. 2012; 35 (1): 47-56. doi: 10.1016/j.tins.2011.11.004
32. Liechti ME, Markou A. Interactive effects of the mGlu5 receptor antagonist MPEP and the mGlu2/3 receptor antagonist LY341495 on nicotine self-administration and reward deficits associated with nicotine withdrawal in rats. Eur J Pharmacol. 2007; 554 (2-3): 164-174. doi:10.1016/j.ejphar.2006.10.011
33. El Yacoubi M, Dubois M, Gabriel C et al. Chronic agomelatine and fluoxetine induce antidepressant-like effects in H/Rouen mice, a genetic mouse model of depression. Pharmacol Biochem Behav. 2011; 100 (2): 284-288. doi: 10.1016/j.pbb.2011.08.001
34. Dremencov E, Newman ME, Kinor N et al. (2005) Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology. 2005; 48 (1): 34-42. doi:10.1016/j.neuropharm.2004.09.013
35. Stein DJ. Anxiety symptoms in depression: clinical and conceptual consideration. Medicographia. 2013; 35 (4): 299-303
36. Insel T, Cuthbert B, Garvey M et al. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010; 167 (7): 748-751. doi: 10.1176/appi.ajp.2010.09091379
37. Davis M, Walker DL, Miles L et al. Phasic vs sustained fear in rats and humans: Role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology. 2010; 35 (1): 105-135. doi: 10.1038/npp.2009.109
38. Senn V, Wolff SB, Herry C et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron. 2014; 81 (2): 428-437. doi: 10.1016/j.neuron.2013.11.006
39. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacol Rev. 2011; 36: 183-206
40. Kalin NH. Mechanisms underlying the early risk to develop anxiety and depression: A translational approach. Eur Neuropsychopharmacology. 2017; 27 (6): 543-553. doi: 10.1016/j.euroneuro.2017.03.004
41. Robinson OJ, Overstreet C, Allen PS et al. The role of serotonin in the neurocircuitry of negative affective bias: Serotonergic modulation of the dorsal medial prefrontal-amygdala ‘aversive amplification’ circuit. Neuroimage. 2013; 78 (1): 217-223. doi: 10.1016/j.neuroimage.2013.03.075
42. Абрамец И. И., Евдокимов Д. В., Зайка Т. О. ГАМКергические механизмы патогенеза и лечения депрессивного синдрома. Архив клин эксперим медицины. 2017; том 26, №1, с.46-54
43. Yates WR, Mitchell J, Rush AJ et al. Clinical features of depressed outpatients with and without co-occurring general medical conditions in STAR* D. Gen Hosp Psychiatry. 2004; 26 (6): 421-429. https://doi:10.1016/j.genhosppsych.2004.06.008
44. Matousek M, Cervena K, Zavesicka L et al. Subjective and objective evaluation of alertness and sleep quality in depressed patients. BMC Psychiatry. 2004; 4 (1): 14. doi: 10.1186/1471-244X-14-89
45. Peterson MJ, Benca RM. Sleep in mood disorders. Sleep Med Clin. 2008; 3 (2): 231-249
46. Mairesse J, Silletti V, Laloux C et al. Chronic agomelatine treatment corrects the abnormalities in the circadian rhythm of motor activity and sleep/wake cycle induced by prenatal restraint stress in adult rats. Int J Neuropsychopharmacol. 2013; 16 (2): 323-338. doi: 10.1017/S1461145711001970
47. Le Dantec Y, Hache G, Guilloux JP et al. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration. Neuroscience. 2014; 274:357-368. doi: 10.1016/j.neuroscience.2014.05.050
48. Scammell TE, Arrigoni E, Lipton J. Neural circuitry of wakefulness and sleep. Neuron. 2017; 93 (4): 747-765. doi: 10.1016/j.neuron.2017.01.014
49. Murphy M, Peterson MJ. Sleep disturbances in depression. Sleep Med Clin. 2015; 10 (1): 17-23. doi: 10.1016/j.jsmc.2014.11.009
50. Aizawa H, Cui W, Tanaka K, Okamoto H. Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci 2013;7:1-6
51. Niciu MJ, Ionescu DF, Richards EM et al. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder, J Neural Transm. 2014; 121 (6): 907-924. doi: 10.1007/s00702-013-1130-x
52. Simmons WK, Burrows K, Avery JA et al. Depression-related increases and decreases in appetite: dissociable patterns of aberrant activity in reward and interoceptive neurocircuitry. Am J Psychiatry. 2016; 173 (4): 418-428. doi: 10.1176/appi.ajp.2015.15020162
53. Berthoud HR. Homeostatic and nonhomeostatic pathways involved in the control of food intake and energy balance. Obesity. 2006; 14 (Suppl 5): 197S-200S. https://doi:10.1038/oby.2006.308
54. Basso AM, Kelley AE. Feeding induced by GABA (A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. Behav Neurosci. 1999;113 (2): 324 -336
55. Will MJ, Franzblau EB, Kelley AE. Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J Neurosci. 2003;23 (7): 2882- 2888
56. Berridge KC. “Liking” and “wanting” food rewards: brain substrates and roles in eating disorders. Physiol Behav 2009; 97 (5): 537-550. doi: 10.1016/j.physbeh.2009.02.044
57. Zald DH. Orbitofrontal cortex contributions to food selection and decision making. Ann Behav Med 2009; 38 (suppl 1): S18-S24. doi: 10.1007/s12160-009-9117-4
58. Drevets WC: Orbitofrontal cortex function and structure in depression. Ann N Y Acad Sci. 2007; 1121 (Dec): 499-527. https://doi:10.1196/annals.1401.029
59. Price JL, Drevets WC: Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010; 35 (1): 192-216. doi: 10.1038/npp.2009.104
60. Simmons WK, Avery JA, Barcalow JC et al: Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum Brain Mapp. 2013; 34 (11): 2944-2958. doi: 10.1002/hbm.22113. Epub 2012 Jun 13
Published
2019-06-01
How to Cite
АБРАМЕЦ, И. И. et al. ANALYSIS OF THE NEUROPHYSIOLOGICAL AND NEUROCHEMICAL MECHANISMS OF SUBSYNDROMES OF BEHAVIORAL DEPRESSIVE SYNDROME. University Clinic, [S.l.], n. 2(31), p. 66-79, june 2019. ISSN 1819-0464. Available at: <http://journal.dnmu.ru/index.php/UC/article/view/303>. Date accessed: 06 july 2024. doi: https://doi.org/10.26435/uc.v0i2(31).303.