АНАЛИЗ НЕЙРОФИЗИОЛОГИЧЕСКИХ И НЕЙРОХИМИЧЕСКИХ МЕХАНИЗМОВ СУБСИНДРОМОВ ПОВЕДЕНЧЕСКОГО ДЕПРЕССИВНОГО СИНДРОМА

  • И. И. Абрамец ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк
  • Ю. В. Кузнецов ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк
  • Д. В. Евдокимов ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк
  • Т. О. Зайка ГОО ВПО «Донецкий национальный медицинский университет имени М. Горького», Донецк

Аннотация

Депрессивный синдром наблюдается при ряде психических, неврологических и соматических заболеваний. Столь широкое распространение синдрома указывает на гетерогенность составляющих его субсиндромов. Нейрофизиологическая и нейрохимическая гетерогенность заболевания затрудняет его лечение. В этом обзоре рассмотрены патофизиологические механизмы развития тех субсиндромов депрессивного расстройства, которые можно моделировать на животных. Это касается снижения мотиваций, определяющих парадигму поведения, ангедонии, повышения уровня тревожности, нарушений сна и аппетита. Приведены данные литературы, что в основе этих субсиндромов лежит ослабление возбуждающей нейропередачи и функциональных связей в лимбических структурах мозга – префронтальной коре, прилежащем ядре, миндалинах, гиппокампе и др.

Литература

1. Kessler RC, Chiu WT, Demler O, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005; 62 (6): 617-27. doi:10.1001/archpsyc.62.6.617
2. Millan MJ. (2006). Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther. 2006; 110 (2): 135-370. doi:10.1016/j.pharmthera.2005.11.006
3. Harro J, Oreland L. Depression as a spreading adjustment disorder of monoaminergic neurons: a case for primary implications of the locus coeruleus. Brain Res Rev. 2001; 38 (1): 79 – 128. PMID 11750928
4. Stepanichev M, Dygalo N.N, Grigoryan G, et al.. Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BioMed Research International. 2014, Article ID 932757, 20 pages,
http://dx.doi:10.1155/2014/932757
5. Abelaira HM, Reus GZ, Quevedo J. Animal models as tools to study the pathophysiology of depression. Revista Brasileira de Psiquiatria. 2013;35 (2): S112-S120. doi:10.1590/1516-4446-2013-1098
6. Вартанов А.В., Вартанова И.И. Эмоции, мотивация, потребность в филогенезе психики и мозга. Вестн. Москов. Ун-та, сер.14. Психология, 2005; (3): 20-35.
7. Reynolds SM, Berridge KC. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat Neurosci. 2008; 11 (4): 423-425. doi: 10.1038/nn2061
8. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013; 14 (9): 609-625. doi: 10.1038/nrn3381
9. Nicola SM. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl). 2007; 191 (3): 521-550. doi:10.1007/s00213-006-0510-4
10. Carlezon WA Jr, Thomas MJ. Biological substrates of reward and aversion: A nucleus accumbens activity hypothesis. Neuropharmacology. 2009; 56 (suppl 1): 122-132. doi: 10.1016/j.neuropharm.2008.06.075
11. Lobo MK, Zaman S, Damez-Werno DM et al. DeltaFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013 33 (49): 18381-18395. doi: 10.1523/JNEUROSCI.1875-13.2013
12. Natsubori A, Tsutsui-Kimura I, Nishida H et al. Ventrolateral striatal medium spiny neurons positively regulate food-incentive, goal-directed behavior independently of D1 and D2 selectivity. J Neurosci. 2017; 37 (10): 2723-2733. doi: 10.1523/JNEUROSCI.3377-16.2017
13. Bailey MR, Simpson EH, Balsam PD. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiol Learn Mem. 2016; 133 (Sep): 233-256. doi: 10.1016/j.nlm.2016.07.015
14. Hutchison MA, Gu X, Adrover MF et al. Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior. Molecular Psychiatry. 2018; 23 (5): 1213-1225. doi: 10.1038/mp.2017.7
15. Barrot M, Sesack SR, Georges F et al. Braking dopamine systems: A new GABA master structure for mesolimbic and nigrostriatal functions. J Neurosci. 2012; 32 (41): 14094-14101. doi: 10.1523/JNEUROSCI.3370-12.2012
16. Proulx CD, Aronson S, Milivojevic D et al. A neural pathway controlling motivation to exert effort. Proc. Natl. Acad. Sci. USA. 2018; 115 (22): 5792-5797. doi: 10.1073/pnas.1801837115
17. Felger JC, Li Z, Haroon E et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol. Psychiatry. 2016; 21 (10): 1358-1365. doi: 10.1038/mp.2015.168
18. Yohn SE, Arif Y, Haley A et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology. 2016; 233 (19-20): 3575-3586. doi: 10.1007/s00213-016-4392-9
19. Nunes EJ, Randall PA, Estrada A et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology. 2014; 231 (4): 727-736. doi: 10.1007/s00213-013-3285-4
20. Salazar A, Gonzalez-Rivera BL, Redus L et al. Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral ipopolysaccharide immune challenge. Hormon Behav. 2012; 62 (3): 202-209. doi: 10.1016/j.yhbeh.2012.03.010
21. Vichaya EG, Laumet G, Christian DL et al. Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2,3 dioxygenase. Neuropsychopharmacology. 2019; 44 (2): 364-371. doi: 10.1038/s41386-018-0075-z
22. Rizvi SA, Pizzagalli DA, Sproule DA, Kennedy SH. Assessing anhedonia in depression: potentials and pitfalls. Neurosci Biobehav Rev. 2016; 65 (1): 21-35. doi: 10.1016/j.neubiorev.2016.03.004
23. Sescousse G, Caldú X, Segura B et al. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev. 2013; 37 (4): 681-696. doi: 10.1016/j.neubiorev.2013.02.002
24. Nielsen CK, Arnt J, Sánchez C. Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and interindividual differences. Behav Brain Res. 2000; 107 (1): 21-33
25. Rizvi SJ, Quilty LC, Sproule BA et al. Development and validation of the Dimensional Anhedonia Rating Scale (DARS) in a community sample and individuals with major depression. Psychiatry Res. 2015; 229 (2): 109-119. doi: 10.1016/j.psychres.2015.07.062
26. Keedwell, PA, Andrew C, Williams SC et al. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005; 58 (11): 843-853. doi:10.1016/j.biopsych.2005.05.019
27. Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011; 15 (2): 56-67. doi: 10.1016/j.tics.2010.12.004
28. Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012; 35 (1): 68-77. doi: 10.1016/j.tins.2011.11.005
29. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998; 28 (3): 309-369
30. Wassum KM, Ostlund SB, Maidment NT et al. Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proc Natl Acad Sci USA. 2009; 106 (30): 12512-12517. doi: 10.1073/pnas.0905874106
31. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid acting agents. Trends Neurosci. 2012; 35 (1): 47-56. doi: 10.1016/j.tins.2011.11.004
32. Liechti ME, Markou A. Interactive effects of the mGlu5 receptor antagonist MPEP and the mGlu2/3 receptor antagonist LY341495 on nicotine self-administration and reward deficits associated with nicotine withdrawal in rats. Eur J Pharmacol. 2007; 554 (2-3): 164-174. doi:10.1016/j.ejphar.2006.10.011
33. El Yacoubi M, Dubois M, Gabriel C et al. Chronic agomelatine and fluoxetine induce antidepressant-like effects in H/Rouen mice, a genetic mouse model of depression. Pharmacol Biochem Behav. 2011; 100 (2): 284-288. doi: 10.1016/j.pbb.2011.08.001
34. Dremencov E, Newman ME, Kinor N et al. (2005) Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology. 2005; 48 (1): 34-42. doi:10.1016/j.neuropharm.2004.09.013
35. Stein DJ. Anxiety symptoms in depression: clinical and conceptual consideration. Medicographia. 2013; 35 (4): 299-303
36. Insel T, Cuthbert B, Garvey M et al. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010; 167 (7): 748-751. doi: 10.1176/appi.ajp.2010.09091379
37. Davis M, Walker DL, Miles L et al. Phasic vs sustained fear in rats and humans: Role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology. 2010; 35 (1): 105-135. doi: 10.1038/npp.2009.109
38. Senn V, Wolff SB, Herry C et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron. 2014; 81 (2): 428-437. doi: 10.1016/j.neuron.2013.11.006
39. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacol Rev. 2011; 36: 183-206
40. Kalin NH. Mechanisms underlying the early risk to develop anxiety and depression: A translational approach. Eur Neuropsychopharmacology. 2017; 27 (6): 543-553. doi: 10.1016/j.euroneuro.2017.03.004
41. Robinson OJ, Overstreet C, Allen PS et al. The role of serotonin in the neurocircuitry of negative affective bias: Serotonergic modulation of the dorsal medial prefrontal-amygdala ‘aversive amplification’ circuit. Neuroimage. 2013; 78 (1): 217-223. doi: 10.1016/j.neuroimage.2013.03.075
42. Абрамец И. И., Евдокимов Д. В., Зайка Т. О. ГАМКергические механизмы патогенеза и лечения депрессивного синдрома. Архив клин эксперим медицины. 2017; том 26, №1, с.46-54
43. Yates WR, Mitchell J, Rush AJ et al. Clinical features of depressed outpatients with and without co-occurring general medical conditions in STAR* D. Gen Hosp Psychiatry. 2004; 26 (6): 421-429. https://doi:10.1016/j.genhosppsych.2004.06.008
44. Matousek M, Cervena K, Zavesicka L et al. Subjective and objective evaluation of alertness and sleep quality in depressed patients. BMC Psychiatry. 2004; 4 (1): 14. doi: 10.1186/1471-244X-14-89
45. Peterson MJ, Benca RM. Sleep in mood disorders. Sleep Med Clin. 2008; 3 (2): 231-249
46. Mairesse J, Silletti V, Laloux C et al. Chronic agomelatine treatment corrects the abnormalities in the circadian rhythm of motor activity and sleep/wake cycle induced by prenatal restraint stress in adult rats. Int J Neuropsychopharmacol. 2013; 16 (2): 323-338. doi: 10.1017/S1461145711001970
47. Le Dantec Y, Hache G, Guilloux JP et al. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration. Neuroscience. 2014; 274:357-368. doi: 10.1016/j.neuroscience.2014.05.050
48. Scammell TE, Arrigoni E, Lipton J. Neural circuitry of wakefulness and sleep. Neuron. 2017; 93 (4): 747-765. doi: 10.1016/j.neuron.2017.01.014
49. Murphy M, Peterson MJ. Sleep disturbances in depression. Sleep Med Clin. 2015; 10 (1): 17-23. doi: 10.1016/j.jsmc.2014.11.009
50. Aizawa H, Cui W, Tanaka K, Okamoto H. Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci 2013;7:1-6
51. Niciu MJ, Ionescu DF, Richards EM et al. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder, J Neural Transm. 2014; 121 (6): 907-924. doi: 10.1007/s00702-013-1130-x
52. Simmons WK, Burrows K, Avery JA et al. Depression-related increases and decreases in appetite: dissociable patterns of aberrant activity in reward and interoceptive neurocircuitry. Am J Psychiatry. 2016; 173 (4): 418-428. doi: 10.1176/appi.ajp.2015.15020162
53. Berthoud HR. Homeostatic and nonhomeostatic pathways involved in the control of food intake and energy balance. Obesity. 2006; 14 (Suppl 5): 197S-200S. https://doi:10.1038/oby.2006.308
54. Basso AM, Kelley AE. Feeding induced by GABA (A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. Behav Neurosci. 1999;113 (2): 324 -336
55. Will MJ, Franzblau EB, Kelley AE. Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J Neurosci. 2003;23 (7): 2882- 2888
56. Berridge KC. “Liking” and “wanting” food rewards: brain substrates and roles in eating disorders. Physiol Behav 2009; 97 (5): 537-550. doi: 10.1016/j.physbeh.2009.02.044
57. Zald DH. Orbitofrontal cortex contributions to food selection and decision making. Ann Behav Med 2009; 38 (suppl 1): S18-S24. doi: 10.1007/s12160-009-9117-4
58. Drevets WC: Orbitofrontal cortex function and structure in depression. Ann N Y Acad Sci. 2007; 1121 (Dec): 499-527. https://doi:10.1196/annals.1401.029
59. Price JL, Drevets WC: Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010; 35 (1): 192-216. doi: 10.1038/npp.2009.104
60. Simmons WK, Avery JA, Barcalow JC et al: Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum Brain Mapp. 2013; 34 (11): 2944-2958. doi: 10.1002/hbm.22113. Epub 2012 Jun 13
Опубликована
2019-06-01
Как цитировать
АБРАМЕЦ, И. И. et al. АНАЛИЗ НЕЙРОФИЗИОЛОГИЧЕСКИХ И НЕЙРОХИМИЧЕСКИХ МЕХАНИЗМОВ СУБСИНДРОМОВ ПОВЕДЕНЧЕСКОГО ДЕПРЕССИВНОГО СИНДРОМА. Университетская клиника, [S.l.], n. 2(31), p. 66-79, июнь 2019. ISSN 1819-0464. Доступно на: <http://journal.dnmu.ru/index.php/UC/article/view/303>. Дата доступа: 17 ноя. 2024 doi: https://doi.org/10.26435/uc.v0i2(31).303.