БЕТА АМИЛОИД КАК ВОЗМОЖНЫЙ МАРКЕР НЕЙРОДЕГЕНЕРАЦИИ ГИПОКСИЧЕСКИ-ИШЕМИЧЕСКОЙ ЭНЦЕФАЛОПАТИИ У НОВОРОЖДЕННЫХ

  • А. Н. Колесников
  • Г. В. Маноченко
  • А. Г. Маноченко

Аннотация

Асфиксия и гипоксически-ишемическая энцефа­ло­патия (ГИЭ) - одна из самых актуальных проблем неонатологии. К наиболее перспективным инструментам для выявления поражения центральной нервной системы относятся биомаркеры поражения головного мозга. В настоящей статье суммированы данные литературы о бета амилоидах, их роли в патологии и норме, рассмотрены возможности их использования в качестве биомаркеров при ГИЭ у новорожденных. Для внедрения данных биомаркеров в клиническую практику в первую очередь необходимо решить вопрос их клинического позиционирования, определить референсные величины, интерпретацию отклонений их уровня.

Литература

1. Задворнов А.А. Голомидов А.В. Григорьев Е.В. Биомаркеры перинатального поражения центральной нервной системы. Неонатология: новости, мнения, обучение. 2017; 1: 47-57. [online] Neonatology-nmo.geotar.ru. Available at: http://neonatology-nmo.geotar.ru/ru/jarticles_neonat/260.html?SSr=200133ed5a09ffffffff27c__07e2030e091404-166e [Accessed 21 Mar. 2018].
2. Иванов Д.О. (ред.). Руководство по перинатологии.СПб.:Информ-Навигатор; 2015:1216
3. Abiramalatha T, Kumar M, Chandran S, Sudhakar Y, Thenmozhi M, Thomas N. Troponin-T as a biomarker in neonates with perinatal asphyxia. J Neonatal Perinatal Med. 2017;10(3):275-280. doi:10.3233/npm-16119.
4. Augutis K, Axelsson M, Portelius E et al. Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis. Multiple Sclerosis Journal. 2012;19(5):543-552. doi:10.1177/1352458512460603.
5. Backman L, Jones S, Berger A, Laukka E, Small B. Multiple cognitive deficits during the transition to Alzheimer's disease. J Intern Med. 2004;256(3):195-204. doi:10.1111/j.1365-2796.2004.01386.x.
6. Bandaru S, Lin K, Roming S, Vellipuram R, Harney J. Effects of PI3K inhibition and low docosahexaenoic acid on cognition and behavior. Physiol Behav. 2010;100(3):239-244. doi:10.1016/j.physbeh.2009.10.019.
7. Bates K, Verdile G, Li Q et al. Clearance mechanisms of Alzheimer's amyloid-β peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry. 2008;14(5):469-486. doi:10.1038/mp.2008.96.
8. Bibl M, Gallus M, Welge V et al. Characterization of cerebrospinal fluid aminoterminally truncated and oxidized amyloid-β peptides. PROTEOMICS - Clinical Applications. 2012;6(3-4):163-169. doi:10.1002/prca.201100082.
9. Bucciantini M, Giannoni E, Chiti F et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416(6880):507-511. doi:10.1038/416507a.
10. Dumont M, Lin M, Beal M. Mitochondria and Antioxidant Targeted Therapeutic Strategies for Alzheimer's Disease. Journal of Alzheimer's Disease. 2010;20(s2):S633-S643. doi:10.3233/jad-2010-100507.
11. Graham E, Ruis K, Hartman A, Northington F, Fox H. A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol. 2008;199(6):587-595. doi:10.1016/j.ajog.2008.06.094.
12. Hansson O, Zetterberg H, Vanmechelen E et al. Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer's disease in patients with mild cognitive impairment. Neurobiol Aging. 2010;31(3):357-367. doi:10.1016/j.neurobiolaging.2008.03.027.
13. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991;12:383-388. doi:10.1016/0165-6147(91)90609-v.
14. Huber G, Martin J, Löffler J, Moreau J. Involvement of amyloid precursor protein in memory formation in the rat: an indirect antibody approach. Brain Res. 1993;603(2):348-352. doi:10.1016/0006-8993(93)91261-p.
15. Karran E, Mercken M, Strooper B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nature Reviews Drug Discovery. 2011;10(9):698-712. doi:10.1038/nrd3505.
16. Kummer M, Heneka M. Truncated and modified amyloid-beta species. Alzheimers Res Ther. 2014;6(3):28. doi:10.1186/alzrt258.
17. Lambert M, Barlow A, Chromy B et al. Diffusible, nonfibrillar ligands derived from A 1-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences. 1998;95(11):6448-6453. doi:10.1073/pnas.95.11.6448.
18. Lue L, Kuo Y, Roher A et al. Soluble Amyloid β Peptide Concentration as a Predictor of Synaptic Change in Alzheimer's Disease. Am J Pathol. 1999;155(3):853-862. doi:10.1016/s0002-9440(10)65184-x.
19. Luo Y, Sunderland T, Wolozin B. Physiologic Levels of β-Amyloid Activate Phosphatidylinositol 3-Kinase with the Involvement of Tyrosine Phosphorylation. J Neurochem. 2002;67(3):978-987. doi:10.1046/j.1471-4159.1996.67030978.x.
20. Magnoni S, Esparza T, Conte V et al. Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain. 2011;135(4):1268-1280. doi:10.1093/brain/awr286.
21. Mattson M. Calcium and neurodegeneration. Aging Cell. 2007;6(3):337-350. doi:10.1111/j.1474-9726.2007.00275.x.
22. Mileusnic R, Lancashire C, Johnston A, Rose S. APP is required during an early phase of memory formation. European Journal of Neuroscience. 2000;12(12):4487-4495. doi:10.1111/j.1460-9568.2000.01344.x.
23. Morley J, Farr S. Hormesis and Amyloid-β Protein: Physiology or Pathology?. Journal of Alzheimer's Disease. 2012;29(3):487-492. doi:10.3233/JAD-2011-111928.
24. Nikolaev A, McLaughlin T, O’Leary D, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009;457(7232):981-989. doi:10.1038/nature07767.
25. Pettit D, Shao Z, Yakel L. beta-Amyloid(1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. Journal of Neuroscience. 2001;21(1):120.
26. Pillot T, Drouet B, Queillé S et al. The Nonfibrillar Amyloid β-Peptide Induces Apoptotic Neuronal Cell Death. J Neurochem. 2002;73(4):1626-1634. doi:10.1046/j.1471-4159.1999.0731626.x.
27. Pillot T, Goethals M, Vanloo B et al. Fusogenic Properties of the C-terminal Domain of the Alzheimer β-Amyloid Peptide. Journal of Biological Chemistry. 1996;271(46):28757-28765. doi:10.1074/jbc.271.46.28757.
28. Puzzo D, Privitera L, Fa' M et al. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol. 2011;69(5):819-830. doi:10.1002/ana.22313.
29. Quintanilla R, Orellana J, von Bernhardi R. Understanding Risk Factors for Alzheimer's Disease: Interplay of Neuroinflammation, Connexin-based Communication and Oxidative Stress. Arch Med Res. 2012;43(8):632-644. doi:10.1016/j.arcmed.2012.10.016.
30. Randall J, Mörtberg E, Provuncher G et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: Results of a pilot study. Resuscitation. 2013;84(3):351-356. doi:10.1016/j.resuscitation.2012.07.027.
31. Reddy P. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Brain Res. 2011;1415:136-148. doi:10.1016/j.brainres.2011.07.052.
32. Reinhard C, Hébert S, De Strooper B. The amyloid-β precursor protein: integrating structure with biological function. EMBO J. 2005;24(23):3996-4006. doi:10.1038/sj.emboj.7600860.
33. Swerdlow R, Burns J, Khan S. The Alzheimer's disease mitochondrial cascade hypothesis: Progress and perspectives. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2014;1842(8):1219-1231. doi:10.1016/j.bbadis.2013.09.010.
34. Benterud T, Pankratov L, Solberg R et al. Perinatal Asphyxia May Influence the Level of Beta-Amyloid (1-42) in Cerebrospinal Fluid: An Experimental Study on Newborn Pigs. PLoS ONE. 2015;10(10):e0140966. doi:10.1371/journal.pone.0140966.
35. Tummala H, Li X, Homayouni R. Interaction of a novel mitochondrial protein, 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1), with the amyloid precursor protein family. European Journal of Neuroscience. 2010;31(11):1926-1934. doi:10.1111/j.1460-9568.2010.07248.x.
36. van Handel M, de Sonneville L, de Vries L, Jongmans M, Swaab H. Specific Memory Impairment Following Neonatal Encephalopathy in Term-Born Children. Dev Neuropsychol. 2012;37(1):30-50. doi:10.1080/87565641.2011.581320.
37. van Handel M, Swaab H, de Vries L, Jongmans M. Behavioral Outcome in Children with a History of Neonatal Encephalopathy following Perinatal Asphyxia. J Pediatr Psychol. 2009;35(3):286-295. doi:10.1093/jpepsy/jsp049.
38. Vannucci R, Perlman J. Interventions for Perinatal Hypoxic-Ischemic Encephalopathy. Pediatrics. 1997;100(6):1004-1114. doi:10.1542/peds.100.6.1004.
39. Westermann B. Nitric Oxide Links Mitochondrial Fission to Alzheimer's Disease. Sci Signal. 2009;2(69):pe29-pe29. doi:10.1126/scisignal.269pe29.
40. WHO. World Health Organization. Annual report 2010.2010
41. Zetterberg H, Mörtberg E, Song L et al. Hypoxia Due to Cardiac Arrest Induces a Time-Dependent Increase in Serum Amyloid β Levels in Humans. PLoS ONE. 2011;6(12):e28263. doi:10.1371/journal.pone.0028263.
Опубликована
2018-09-22
Как цитировать
КОЛЕСНИКОВ, А. Н.; МАНОЧЕНКО, Г. В.; МАНОЧЕНКО, А. Г.. БЕТА АМИЛОИД КАК ВОЗМОЖНЫЙ МАРКЕР НЕЙРОДЕГЕНЕРАЦИИ ГИПОКСИЧЕСКИ-ИШЕМИЧЕСКОЙ ЭНЦЕФАЛОПАТИИ У НОВОРОЖДЕННЫХ. Университетская клиника, [S.l.], n. 3(28), p. 78-84, сен. 2018. ISSN 1819-0464. Доступно на: <http://journal.dnmu.ru/index.php/UC/article/view/156>. Дата доступа: 20 ноя. 2018 doi: https://doi.org/10.26435/uc.v0i3(28).156.